Bachelor Thesis:
A Fair O(1) High Throughput
CPU-Scheduler for Linux (HTFS)

Markus Pargmann
University of Paderborn

December 12, 2011

1/22

/ Motivation

Server market goals

e High performance
e Low costs

e Efficient power usage

2/22

Motivation

Server market goals

e High performance
e Low costs

e Efficient power usage

Server market trends

e Virtualization

e Cloud computing

e Linux (no license costs)

2/22

Motivation

Kernel is important factor for performance

e Every process needs the CPU

CPU-Scheduler manages most important component

Completely Fair Scheduler is O(log n)

3/22

/ Motivation

Linux

e Kernel is important factor for performance
e Every process needs the CPU
e CPU-Scheduler manages most important component

e Completely Fair Scheduler is O(log n)

Scheduler improvement potential

e Server center with 1000 servers

e 0.1% improvement = 1 server

e 1% improvement = 10 servers

3/22

Basics
Concepts
Evaluation

Conclusion

4/22

Linux scheduler

e A task is process or thread with priority/weight
e Interactivity: Often switching between states
e Runqueue stores running tasks

e One runqueue per CPU

5/22

Basics

Linux scheduler

e A task is process or thread with priority/weight

e Interactivity: Often switching between states
e Runqueue stores running tasks

e One runqueue per CPU

Completely Fair Scheduler (CFS)

e Virtual runtimes

e Comparable
e vruntime =

runtime
weight

e Tasks sorted by virtual runtimes = O(log n)

Choose task with lowest virtual runtime

Simple design

e High constant time consumption

5/22

Basics
Concepts
Evaluation

Conclusion

6/22

e Interactive/Normal
Runqueue

e 50 priorityqueues each

e Priorityqueue is list of
entities

HTFS Dual Runqueue

Interactive Runqueue Normal Runqueue

Prlorltyqueues Prlorltyqueues

7/22

HTFS Dual Runqueue

° Interactive/NormaI Interactive Runqueue Normal Runqueue
Runqueue
e 50 priorityqueues each

e Priorityqueue is list of
entities

Each priorityqueue / runqueue can be interpreted as one entity

Using a runcost-balance model to choose

All basic operations in constant time

Interactive runqueue has more weight

7/22

/ Concepts — Virtual Time

e Virtual time to compare virtual runtimes
e Task’s virtual runtime initialized with virtual time
e Virtual runtime only changes after running

e Virtual time changes after running any task

| vti:ne

A I /
P1 P3 P2

NV

8/22

Concepts — Virtual Time

e Virtual time to compare virtual runtimes
e Task’s virtual runtime initialized with virtual time

e Virtual runtime only changes after running

Virtual time changes after running any task

| vti:ne

A I /
P1 P3 P2

NV

e Information about task'’s situation through comparison
e Adaptive weight based on virtual runtime

e All virtual runtimes are within boundaries

8/22

/ Concepts — Fairness Proof Idea

HTFS fairness

e Case vruntime << vtime

e Case vruntime >> vtime

9/22

Concepts — Fairness Proof Idea

HTFS fairness

e Case vruntime << vtime
ini : a q L timesli
e Minimal possible vruntime increase: & =<

weight
e Maximal possible boost: > 16 (interactive runqueue)
L.timeslice . .
L8 -
o =16 weight ~ > Vtime increasement

e Case vruntime >> vtime

9/22

Concepts — Fairness Proof Idea

HTFS fairness

e Case vruntime << vtime
ini : a q L timesli
e Minimal possible vruntime increase: & =<

weight
e Maximal possible boost: > 16 (interactive runqueue)
L.timeslice . .
L8 -
o =16 weight ~ > Vtime increasement

e Case vruntime >> vtime

e Only case: inaccurate time measurement
e Can be compensated by weight decreasement

9/22

Concepts — Fairness Proof Idea

HTFS fairness

e Case vruntime << vtime
ini : a q L timesli
e Minimal possible vruntime increase: &=

weight
e Maximal possible boost: > 16 (interactive runqueue)
° 16 L. timeslice o . t
= : f—weight > vtime Increasemen

e Case vruntime >> vtime

e Only case: inaccurate time measurement
e Can be compensated by weight decreasement

CFS fairness

e Executes the task with smallest vruntime

e = always within boundaries

9/22

Basics
Concepts
Evaluation

Conclusion

10/22

Evaluation — Test Environment

Evaluation goals

e Measure throughput and interactivity
e Use different workloads

e Use different hardware platforms

11/22

Evaluation — Test Environment

Evaluation goals

e Measure throughput and interactivity
e Use different workloads

e Use different hardware platforms

Environment

e Phoronix test suite

e Many benchmarks
e Records scheduler statistics

e Athlon Il M320 Dual-Core @ 2.1GHz
e 2 x Intel Xeon E5520 @ 2.26GHz

11/22

Evaluation — Performance

Apache Benchmark v2.2.17
S ge ng

.‘Requests Fer Second, Maore Is Better Universitdt Paderborn

CFS 1 Core

4503 .47

Powered By Phoronix Test Suite 3.4.0m32

12/22

Evaluation — Performance

Timed MPlayer Compilation v1.0-rc3

Time To Cormpile

4 5econds, Less Is Better Universitdt Paderbarn

CFS 1 Core

Powered By Phoranix Test Suite 3.4.0m3

13/22

WCFS 1 Core MHTFS 1 Core

¥ Contex‘tmitchesger second, Less |s Better Universitdt Faderborn

Average: 330.096.

Feak: 877.0716.0

Low: 128.810.3
1000 == - == o o oo
sood --r-{--t-+-4--r-———-1----4--4--r---—-t-r----p----4--
soodb-+-4--F---+--+-4--+--F-4--t--F-4--}--F-1--F-H-1--
400 d-

o T L

Powered By Phaoranix Test Suite 3.4.0m3

14/22

Evaluation — Multi-Core Performance

Compilation v3

A Seconds, Less Is Better Universitst Paderbarn

CFS 1 Core
SE +/-0.24

HTFS 1 Core
SE +/-0.20

CFS 2 Cores
HTFS 2 Cores std
SE +/-0.20

HTFS 2 Cores sf
SE +/-0.
HTFS 2 Cores avg

SE +/-0.1

CFS 18 Cores 64.08

SE +/-0.13
HTFS 16 Cores std 63.49
SE +/-0.13

HTFS 16 Cores stdavg
SE+/-0.1

HTFS 16 Cores avg
SE +/-0.1

15/22

Evaluation — Multi-Core Performance

Timed Linux Kernel-3 Compilation v3.0.4 ptsh.

CPU Usage Monitor
WCFS 16 Cores
BHTFS 16 Cores avg

¥ Percent, Less |s Better
Average: 54,984 185.182.3

1004

80+

50+

40

20+

WHTFS 16 Cores std MHTFS 15 Cores stdavg

Universitit Faderborn

16/22

15000000+

120000004

9000000 +

6000000 +

3000000 4

WCFS 1 Core MHTFS 1 Core

¥ s deviation fram sleeptime, Less s Batter
Average: 4238830 14496

Universitdt Faderbarn

Evaluation — Summary

Single Core | HTFS
CFS better than ... | 31.7%
... better than CFS | 51.7%
Dual Core HTFS
std | stdavg avg
CFS better than ... | 41.7% | 20.0% | 40.0%
... better than CFS | 50.0% | 66.7% | 47.5%
16 Core HTFS
std | stdavg avg
CFS better than ... | 36.7% | 42.2% | 44.4%
... better than CFS | 63.3% | 55.6% | 50.0%

18/22

Basics
Concepts
Evaluation

Conclusion

19/22

/ Conclusion

Low constant time consumption

O(1) time complexity

Good interactivity in all tests

Good single core performance

20/22

Conclusion

e Low constant time consumption

O(1) time complexity

Good interactivity in all tests

Good single core performance

Cons

e Flaws with current multi core performance of HTFS and CFS

e Possibly interactivity problems in some special cases

20/22

e The design is a good alternative

e Especially servers could improve efficiency

e Some code improvements (Load balancing)

e New model for taskgroup support

e New preemption handling

21/22

/ Questions?

Thank you for listening, questions?

22/22

Questions?

Basics

Concepts

m Multi-Queue Design
m Virtual Time

m Fairness Proof Idea

Evaluation

m Test Environment

m Performance

m Multi-Core Performance
m Interactivity

m Summary

Conclusion

23/22

/ Concepts — Timeslices

e Global interactive timeslice of 217 ns = 131us
e CPU-wide adaptive timeslice of 2¥,17 < x < 30

e x is decreased if interactive task’s latency too high

e x is increased if latencies okay

Completely Fair Scheduler

e No fixed timeslice

e Process runtime dependent of
e Virtual runtime of the task
e Number of tasks
e Minimum granularity

24 /22

	Basics
	Concepts
	Multi-Queue Design
	Virtual Time
	Fairness Proof Idea

	Evaluation
	Test Environment
	Performance
	Multi-Core Performance
	Interactivity
	Summary

	Conclusion

