
Bachelor Thesis:
A Fair O(1) High Throughput

CPU-Scheduler for Linux (HTFS)

Markus Pargmann

University of Paderborn

December 12, 2011

1/22



Motivation

Server market goals
• High performance
• Low costs
• Efficient power usage

Server market trends
• Virtualization
• Cloud computing
• Linux (no license costs)

2/22



Motivation

Server market goals
• High performance
• Low costs
• Efficient power usage

Server market trends
• Virtualization
• Cloud computing
• Linux (no license costs)

2/22



Motivation

Linux
• Kernel is important factor for performance
• Every process needs the CPU
• CPU-Scheduler manages most important component
• Completely Fair Scheduler is O(log n)

Scheduler improvement potential
• Server center with 1000 servers
• 0.1% improvement = 1 server
• 1% improvement = 10 servers

3/22



Motivation

Linux
• Kernel is important factor for performance
• Every process needs the CPU
• CPU-Scheduler manages most important component
• Completely Fair Scheduler is O(log n)

Scheduler improvement potential
• Server center with 1000 servers
• 0.1% improvement = 1 server
• 1% improvement = 10 servers

3/22



Outline

1 Basics

2 Concepts

3 Evaluation

4 Conclusion

4/22



Basics

Linux scheduler
• A task is process or thread with priority/weight
• Interactivity: Often switching between states
• Runqueue stores running tasks
• One runqueue per CPU

Completely Fair Scheduler (CFS)
• Virtual runtimes

• Comparable
• vruntime = runtime

weight

• Tasks sorted by virtual runtimes ⇒ O(log n)
• Choose task with lowest virtual runtime
• Simple design
• High constant time consumption

5/22



Basics

Linux scheduler
• A task is process or thread with priority/weight
• Interactivity: Often switching between states
• Runqueue stores running tasks
• One runqueue per CPU

Completely Fair Scheduler (CFS)
• Virtual runtimes

• Comparable
• vruntime = runtime

weight

• Tasks sorted by virtual runtimes ⇒ O(log n)
• Choose task with lowest virtual runtime
• Simple design
• High constant time consumption

5/22



Outline

1 Basics

2 Concepts

3 Evaluation

4 Conclusion

6/22



Concepts – Multi-Queue Design

• Interactive/Normal
Runqueue

• 50 priorityqueues each
• Priorityqueue is list of
entities

• Each priorityqueue / runqueue can be interpreted as one entity
• Using a runcost-balance model to choose
• All basic operations in constant time
• Interactive runqueue has more weight

7/22



Concepts – Multi-Queue Design

• Interactive/Normal
Runqueue

• 50 priorityqueues each
• Priorityqueue is list of
entities

• Each priorityqueue / runqueue can be interpreted as one entity
• Using a runcost-balance model to choose
• All basic operations in constant time
• Interactive runqueue has more weight

7/22



Concepts – Virtual Time

• Virtual time to compare virtual runtimes
• Task’s virtual runtime initialized with virtual time
• Virtual runtime only changes after running
• Virtual time changes after running any task

• Information about task’s situation through comparison
• Adaptive weight based on virtual runtime
• All virtual runtimes are within boundaries

8/22



Concepts – Virtual Time

• Virtual time to compare virtual runtimes
• Task’s virtual runtime initialized with virtual time
• Virtual runtime only changes after running
• Virtual time changes after running any task

• Information about task’s situation through comparison
• Adaptive weight based on virtual runtime
• All virtual runtimes are within boundaries

8/22



Concepts – Fairness Proof Idea

HTFS fairness
• Case vruntime << vtime

• Minimal possible vruntime increase:
1
8 ·timeslice

weight
• Maximal possible boost: > 16 (interactive runqueue)
• ⇒ 16 ·

1
8 ·timeslice

weight > vtime increasement
• Case vruntime >> vtime

• Only case: inaccurate time measurement
• Can be compensated by weight decreasement

CFS fairness
• Executes the task with smallest vruntime
• ⇒ always within boundaries

9/22



Concepts – Fairness Proof Idea

HTFS fairness
• Case vruntime << vtime

• Minimal possible vruntime increase:
1
8 ·timeslice

weight
• Maximal possible boost: > 16 (interactive runqueue)
• ⇒ 16 ·

1
8 ·timeslice

weight > vtime increasement
• Case vruntime >> vtime

• Only case: inaccurate time measurement
• Can be compensated by weight decreasement

CFS fairness
• Executes the task with smallest vruntime
• ⇒ always within boundaries

9/22



Concepts – Fairness Proof Idea

HTFS fairness
• Case vruntime << vtime

• Minimal possible vruntime increase:
1
8 ·timeslice

weight
• Maximal possible boost: > 16 (interactive runqueue)
• ⇒ 16 ·

1
8 ·timeslice

weight > vtime increasement
• Case vruntime >> vtime

• Only case: inaccurate time measurement
• Can be compensated by weight decreasement

CFS fairness
• Executes the task with smallest vruntime
• ⇒ always within boundaries

9/22



Concepts – Fairness Proof Idea

HTFS fairness
• Case vruntime << vtime

• Minimal possible vruntime increase:
1
8 ·timeslice

weight
• Maximal possible boost: > 16 (interactive runqueue)
• ⇒ 16 ·

1
8 ·timeslice

weight > vtime increasement
• Case vruntime >> vtime

• Only case: inaccurate time measurement
• Can be compensated by weight decreasement

CFS fairness
• Executes the task with smallest vruntime
• ⇒ always within boundaries

9/22



Outline

1 Basics

2 Concepts

3 Evaluation

4 Conclusion

10/22



Evaluation – Test Environment

Evaluation goals
• Measure throughput and interactivity
• Use different workloads
• Use different hardware platforms

Environment
• Phoronix test suite

• Many benchmarks
• Records scheduler statistics

• Athlon II M320 Dual-Core @ 2.1GHz
• 2 x Intel Xeon E5520 @ 2.26GHz

11/22



Evaluation – Test Environment

Evaluation goals
• Measure throughput and interactivity
• Use different workloads
• Use different hardware platforms

Environment
• Phoronix test suite

• Many benchmarks
• Records scheduler statistics

• Athlon II M320 Dual-Core @ 2.1GHz
• 2 x Intel Xeon E5520 @ 2.26GHz

11/22



Evaluation – Performance

12/22



Evaluation – Performance

13/22



Evaluation – Performance

14/22



Evaluation – Multi-Core Performance

15/22



Evaluation – Multi-Core Performance

16/22



Evaluation – Interactivity

17/22



Evaluation – Summary

Single Core HTFS
CFS better than . . . 31.7%
. . . better than CFS 51.7%

Dual Core HTFS
std stdavg avg

CFS better than . . . 41.7% 20.0% 40.0%
. . . better than CFS 50.0% 66.7% 47.5%

16 Core HTFS
std stdavg avg

CFS better than . . . 36.7% 42.2% 44.4%
. . . better than CFS 63.3% 55.6% 50.0%

18/22



Outline

1 Basics

2 Concepts

3 Evaluation

4 Conclusion

19/22



Conclusion

Pros
• Low constant time consumption
• O(1) time complexity
• Good interactivity in all tests
• Good single core performance

Cons
• Flaws with current multi core performance of HTFS and CFS
• Possibly interactivity problems in some special cases

20/22



Conclusion

Pros
• Low constant time consumption
• O(1) time complexity
• Good interactivity in all tests
• Good single core performance

Cons
• Flaws with current multi core performance of HTFS and CFS
• Possibly interactivity problems in some special cases

20/22



Outlook

• The design is a good alternative
• Especially servers could improve efficiency

Future work
• Some code improvements (Load balancing)
• New model for taskgroup support
• New preemption handling

21/22



Questions?

Thank you for listening, questions?

22/22



Questions?

1 Basics

2 Concepts
Multi-Queue Design
Virtual Time
Fairness Proof Idea

3 Evaluation
Test Environment
Performance
Multi-Core Performance
Interactivity
Summary

4 Conclusion

23/22



Concepts – Timeslices

HTFS
• Global interactive timeslice of 217ns = 131µs
• CPU-wide adaptive timeslice of 2x , 17 ≤ x ≤ 30
• x is decreased if interactive task’s latency too high
• x is increased if latencies okay

Completely Fair Scheduler
• No fixed timeslice
• Process runtime dependent of

• Virtual runtime of the task
• Number of tasks
• Minimum granularity

24/22


	Basics
	Concepts
	Multi-Queue Design
	Virtual Time
	Fairness Proof Idea

	Evaluation
	Test Environment
	Performance
	Multi-Core Performance
	Interactivity
	Summary

	Conclusion

